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The grand canonical version of the spectrum of singularities formalism is 
presented, relying naturally upon certain Markov transition graphs. The struc- 
ture of a graph is simply determined by the close return times of the dynamical 
system described. Thus, an intimate connection exists between the shape of the 
singularity curve and a small but interesting set of dynamical properties. 
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1. I N T R O D U C T I O N  

In a previous  note,  (1) hereaf ter  referred to as CP, we realized tha t  the for- 
mal i sm of Halsey  et  al. (2~ is a mic rocanon ica l  vers ion of a canonica l  for- 
ma l i sm in t imate ly  re la ted  to Hausdor f f  measure.  In  C P  we discovered that  
the scaling funct ion of  Ref. 3 for pe r iod  doub l ing  serves as the transfer  
mat r ix  for a 1D Ising model .  The  n u m b e r  of sites n in C P  is the level of 
recursive cons t ruc t ion  of the a t t rac tor ,  so tha t  one takes  the ther-  
m o d y n a m i c  l imit  n ~  oe to exact ly  recover  the a t t rac tor .  Since com- 
pu ta t ions  per formed  at  finite n can have cons t ra in ts  on re levant  com- 
binator ics ,  it is na tu ra l  to follow t r ad i t ion  and cons t ruc t  a g rand  canonica l  
formula t ion .  W e  do so, and  immedia t e ly  realize tha t  the g rand  sum is 
ob ta ined  by summing  all pa ths  on a g raph  with d i rec ted  l i n k s - - t h a t  is, on 
a M a r k o v  t rans i t ion  graph.  I t  is easiest  to fix the ideas th rough  example.  
We choose  golden  mean  ro t a t i on  for this purpose .  
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Let me summarize what will be done. The exponential of the free 
energy at the nth level of construction is a sum of interval lengths raised to 
power ft. Each such length is the product of n appropriate scaling factors. 
This sum is multiplied by z n, and n summed over. This means each scaling 
factor is to be multipled by z, and arbitrary products of successive scalings 
formed. In successively more exact approximations there are a finite num- 
ber of distinct scalings which can follow one another by well-defined rules. 
Thus, we have a graph whose nodes are to be correctly linked by directed 
links, each link having weight z times a scaling (a definite number) to the/~ 
power. All paths through the graph are to be formed and summed, thereby 
producing one over a characteristic determinant which must vanish for 
n--+ Go. This occurs for the zero z(fi), which is simply the inverse of the 
leading eigenvalue of the transfer matrix, and so provides the free energy. 
Elementary circuit manipulations make calculations trivial to perform. 

Through example, we will observe that the number of nodes and 
allowed links on a graph are determined by the structure of close return 
times. The most prominent properties of the free energy (or f versus c~ 
curve; for example, 6(mi n and C~ma x of Ref. 2) turn out to depend upon the 
lowest order cycles on the graph. Thus, a deep connection is seen to exist 
between the nature of close return times and the ensuing f versus ~ curve. 
That is, with no more theoretical information than the form of close 
returns, phenomonologically correct f versus c~ curves are determined. 

2. G R A N D  C A N O N I C A L  F O R M A L I S M  

From CP, 

N~-F=~B' = ~ I31=)F~ , 

Defining 

where F=(fi)n~oo F(fl) (1) 

e G(:,~)_ y]znN=F=@ (2) 
n 

we obtain the canonical value of G as the summand, for n = & that is 
stationary in n. That  is, 

G= - ~ l n  z + F=ln N= (3) 

with 0 = OG/On determining ~(z). Thus, 

OG fl?z = - f i /z  (4) 

For fi --+ oo, write 
G = In u (5) 
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so that  (4) becomes 

and u--.  0 as n--* 0% i.e., 

With  N .  ~ a ~, (3) becomes 

u(fi, z) = 0 (6) 

lnaF(fi)=lnz+.~oolim G / ~ = l n z + l i m ( -  zu 

Together  with (6), we thus have the recipe 

F(fi) = In z(fi)/ln a 

where 
u(B, - 0 

Next,  substi tute ( 1 ) i n  (2): 

(7) 

(8) 

(lo) 

where the T~ are successively longer close return times. 
Let us write 

30'/(en, e, ~,..., el) 
=- ~,(e ..... , e l )  (11) 

The point  of  Ref. 3 is that  the scalings cr n depend successively (exponen- 
tially) more  weakly on the lower e's, and become independent  of  n 
asymptot ical ly.  Just how m a n y  of en, en_ 1 .... are to be kept  determines suc- 
cessive approximat ions .  By Refs. 3 and 4 for per iod doubl ing and Ref. 5 for 
golden mean  rotat ion,  very few of the e's determine excellent 
approximat ions .  

t = e l T l +  "'" + g n T , ,  T I <  "'" < T  n 

1 - = - y  znZ I lu,l  
U 

n t 

= ~ z "  ~ [a("l(e ..... ,~,) t  ~ (9) 
n { el,...,e,~ } 

where a logar i thmic basis ~1 ..... ~, labels the index t of a par t icular  nth level 
interval. Fo r  the case of a dynamica l  system, t is simply the n u m b e r  of  t ime 
steps required to image some one A~o ~) into A("), , and we write 
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Equation (11) then says that A (') is a product of n a's, with each suc- 
cessive cr depending on all but the leftmost e of its predecessor. The a's thus 
are transition amplitudes between one set of ~ ...... ~,--r in the r th 
approximation and all those e,_ 1,. ,  e . . . .  e' allowed under the return time 
parametrization of (10). The final r factors can, with impunity, be taken to 
right fill with e ' =  0. 

Equation (9) now says that each such amplitude is raised to power fi, 
multiplied by z, and every allowed set of such products on a graph express- 
ing "legal" transition is to be formed and summed. The result is then l/u, 
where u is that polynomial in z so constructed. Formulas (7) and (8) now 
determine F(/~). 

The graph depicts a transition matrix T labeled by the allowed states 
of e ...... e , - r -  The sum of successive products of n factors now produces 
(zT)L The sum over n is thus 

(1 - -zT)~ 1 oc 1/det(1 - z T )  
m 

where 0 stands for the state 0,..., 0, and so 

u = det(1 - z T )  (12) 

By (8), z i(/~) is an eigenvalue of T, and (7) is the canonical result. 
Thus, once the transition graph is drawn, F is determined within com- 

binations of a set of parameters that are the values a(e ...... e, r) in the r th 
approximation. If a theory for a exists, F is determined. If not, we have a 
phenomenological theory of appropriate F's parametrized by combinations 
of the unknown a's. 

3. GOLDEN MEAN ROTATION 

us compute F for golden mean rotation. This means that in Let 
Eq. (10), 

where 

T~=F~ 

F m + , = F m + F m  I (13) 

It follows that a unique representation of t in (10) is had with e i=0 ,  1, 
where ei+ 1 = 1 --, ~i = 0. 

The first approximation to a consists of two e's, and the values 

~(0, O) = ~1'  if(O, 1 ) =  G2, ~(1, O ) =  ~3 
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Figure 1 

The transition graph is shown in Fig. 1. Our goal is to find the sum of 
paths in Fig. 1 starting and ending at any one node, since the denominator 
is always u of (12) independent of the node. The graph is manipulated by 
the elementary rules shown in Fig. 2. 

It follows by inspection that 

0 = u I = 1 - z o ~  - -  Z 2 ( O ' 2 0 " 3 )  fl (14) 

where ul denotes the first approximation. Observe that ul depends on just 
two parameters, at and 62a3. In fact, it depends on just al .  To see this, 
recall that 

F(du)  = 0  (15) 

where dH is the Hausdorff dimension. Since rotation covers the entire 
circle, d u =  1. According to (7), (15) implies that (14) is satisfied with 
/3 = z = 1, so that 

0 =  1 - a l - a 2 a 3  (16) 
and (14) becomes 

0 =  1 - -  Z0"lfl-- Z2(1 --O'lfl ) ( 1 7 )  

Denoting the golden mean by p [ = ( x / 5 -  1)/2], N . = F . + I  ~ p - " ,  and by 
(7), 

l na ,  1 + [ 1 + 4 \ - - ~ - ~ - /  J J /  J FI(/~) =/3 l-~p + l--~p In ( {  1 (I-a'~lI/2~/2~ 

1 a 

ii) 

(18) 

Figure 2 
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For  subcritical rotat ion,  Ref. 5 shows that  our  first app rox ima t ion  is 
exact with co1= p, so that  

Fsub(fl) = fl -- 1 

and the f versus c~ curve degenerates to a point  f =  c~ = 1. Fo r  criticality 
0.1 -~ 0.47 and F is nontrivial ,  with a quali tat ively correct f versus c~ curve. 
Let us write down the second approx ima t ion  before comment ing .  

We now have the legal t ransi t ions 

000, 001,010, 100, 101 -~ 0.1, 0.2, 0.3, ~4, o.s 

and the transi t ion graph (dual to Fig. 1) is depicted in Fig. 3. Manipu la t ion  
produces 

0 = u 2 =  1 --ZO'flI--Z2(a3(T3)fl--Z3[(G2G30"4)fl--(O'I(T3(T5) fl] (19) 

Employing  0 = u2(1, 1), and defining 

s l = e r l ,  s2=a30.5 (20) 

0 = u 2  = (1  - z s { ) (  1 - z2s~2) - z3(1 - s~ )/J( 1 - s2)8 (21) 

By Ref. 5, s z > s l ,  and s 1 s 2 > ( 1 - - S 1 ) ( 1 - - $ 2 )  , SO that  

2 1 ~ Sift , Z -1 ~ (X~2) fi (22) 
f l ~  - o o  f l ~  +co  

According to the nota t ion  of Ref. 2, we thus have 

= , = 2  l n p  in p ~ma~ (23) 
~min I n  S 1 i n s  2 

One can  now go ahead to successively higher order. Rather,  let us 
quickly state results abou t  arbi t rary  (infinite) order. It  is easy to see from 
(12) that  the coefficient of z n in u is the sum of all independent  n-cycles on 
the graph that  are not  decomposab le  into products  of lower-order  cycles. 
This contr ibut ion receives a minus  sign. In addition, one adds the products  
of all lower-order  disjoint cycles (each with a minus sign to form the 
product )  for which the sum of lengths is n. F r o m  the form of legal states, it 
is easy to see that  there is a unique cycle of length 1 for 0, 0 ..... 0 ..... and a 

F i g u r e  3 
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unique cycle of length 2 for 0, 1, 0, 1 .... ~ 1, 0, 1, 0,.... Thus, sl and s2 can 
be written down to any order. By RG calculations of Ref. 5, 

sl ~ Ic~1-3 and s2 ~ I~1-2 (24) 

with e 1= -0.77... in criticality. 
It is interesting in (24) that ~ 2  ~ rc~l - ~ as n --, oc, because s2 is always 

the product of two 0"'s, where, by Ref. 5, ~ -  1 is not  a dynamical scaling fac- 
tor. That is, 0" is well approximated as having three constant values so that 
(16) is satisfied, and s ~  3, s 2 ~ e  6, with c~ 1 not  a level-to-level suc- 
cessive refinement. It is precisely the degeneracy of F over internal scales 
that produces the intuitive maximum scale at ~-~. But this is a real 

phenomenon: with finite data of F n+l points, there are n scaling actions, 
with the maximum scale set by the n-epsilon approximation. One can verify 
that at this level, s 2 has converged to c~ 2 to within c~ n. Since e 1 0.77, 
~max of Ref. 2 for relatively large data sets will be measurably below the 
asymptotic prediction, and its f versus c~ curve that of un and not that 
ofuoo. 

4. D I S C U S S I O N  A N D  C O N C L U S I O N S  

Setting sl and s2 in (21) to the asymptotic values (24) produces an 
f versus c~ curve that changes within 1% to the next level of calculation, 
and in excellent agreement with the numerical curve in Ref. 2. We can 
obviously compute it to any degree of accuracy. However, Fig. 1 produces 
a qualitatively correct result already. Let us say why this is so. 

The lowest order period doubling calculation is shown in Fig. 4, so 
that 

With a I < 0"2, 

u = 1 - z ( a { +  0"~) (25) 

In 1/2 In 1/2 
- - - ,  (26) 

~Zmin - -  in 0.1 ~max - -  In 0" 2 

To all orders, this process always has two 1-cycles, that of 0000.00... and 
11...1..., so that f versus ~ is fundamentally symmetric in its small- and 
large-scale behaviors. In contrast, the large scale in (14) is determined by 
the z 2 square term from its 2-cycle, and is hence asymmetric in its behavior. 

F i g u r e  4 
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All f versus e curves loosely resemble one another. They qualitatively 
differ most noticeably through the differences in small and large scales. It 
takes just a few numerical parameters to quantitatively fit experimental 
data once the parametric form of F is available. We now see that the crux 
of this form is set by the short-length cycles on the Markov graphs. This 
cycle distribution, however, is determined by the properties of close return 
times. Thus, f versus e is a data processing that principally comments upon 
return time properties of dynamical systems. Knowledge of return times 
determines the form of f versus e with parameters that can then be extrac- 
ted. It would be most interesting to reverse this inference for more poorly 
understood systems. 

In some perspective, the return time expansion of (10) determines at 
level n a quite large graph. The graph in good approximation reduces in 
size if well-behaved scalings can approximate (11). Now it is quite clear 
that low e's cannot be very significant, since they represent a small number 
of iterates of the smooth dynamical process, which thus preserves the ratio 
of the small differences of (11). That there should be an exponential 
decrease, while true for period doubling and golden mean rotation, need 
not be generally true. However, there can still be a large class of interesting 
problems for which the short cycles on the graph predominantly mark the 
form of F(/~). With positive Liapunov exponents, there is an effective noise, 
which can move an orbit to a nearby point with different scaling properties. 
One might incorporate this by adding "stochastic" links on the graph that 
differ from the scaling links by having no z weights. It will thus be very 
interesting to see which--if any--of these ideas can be extracted from 
numerics on quite chaotic systems. 
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